skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Crystallization of Spätzle, a cystine-knot protein involved in embryonic development and innate immunity in Drosophila melanogaster

Journal Article · · Acta Crystallographica. Section F
;  [1];  [2]
  1. Institut für Biochemie und Biotechnologie, Martin-Luther-Universität Halle-Wittenberg, Abteilung Physikalische Biotechnologie, Kurt-Mothes-Strasse 3, 06120 Halle (Saale) (Germany)
  2. Max-Planck-Institut für Proteinfaltung, Abteilung Massenspektrometrie, Kurt-Mothes-Strasse 3, 06120 Halle (Saale) (Germany)

Crystallization of the cystine-knot protein Spätzle occurred following serendipitous limited degradation of the pro-Spätzle propeptide during the crystallization experiment. The Spätzle protein is involved in both the definition of the dorsal–ventral axis during embryonic development and in the adult innate immune response. The disulfide-linked dimeric cystine-knot protein has been expressed as a proprotein in inclusion bodies in Escherichia coli and refolded in vitro by rapid dilution. Initial orthorhombic crystals that diffracted to 7 Å resolution were obtained after three months by the sitting-drop vapour-diffusion method. Optimization of the crystallization conditions resulted in orthorhombic crystals (space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 53.0, b = 59.2, c = 62.5 Å) that diffracted to 2.8 Å resolution in-house. The small volume of the asymmetric unit indicated that it was not possible for the crystals to contain the complete pro-Spätzle dimer. Mass spectrometry, N-terminal sequencing and Western-blot analysis revealed that the crystals contained the C-terminal disulfide-linked cystine-knot dimer. Comparison of various crystallization experiments indicated that degradation of the N-terminal prodomain was dependent on the buffer conditions.

OSTI ID:
22360612
Journal Information:
Acta Crystallographica. Section F, Vol. 64, Issue Pt 8; Other Information: PMCID: PMC2494967; PMID: 18678937; PUBLISHER-ID: gj5042; OAI: oai:pubmedcentral.nih.gov:2494967; Copyright (c) International Union of Crystallography 2008; Country of input: International Atomic Energy Agency (IAEA); ISSN 1744-3091
Country of Publication:
United Kingdom
Language:
English