skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Complex structure of a bacterial class 2 histone deacetylase homologue with a trifluoromethylketone inhibitor

Journal Article · · Acta Crystallographica. Section F
 [1]; ; ; ;  [2];  [1]
  1. Abteilung für Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik and GZMB, Justus-von-Liebig Weg 11, 37077 Göttingen (Germany)
  2. Abteilung für Molekulare Genetik und Präparative Molekularbiologie, Institut für Mikrobiologie und Genetik, Grisebachstrasse 8, 37077 Göttingen (Germany)

The crystal structure of HDAH FB188 in complex with a trifluoromethylketone at 2.2 Å resolution is reported and compared to a previously determined inhibitor complex. Histone deacetylases (HDACs) have emerged as attractive targets in anticancer drug development. To date, a number of HDAC inhibitors have been developed and most of them are hydroxamic acid derivatives, typified by suberoylanilide hydroxamic acid (SAHA). Not surprisingly, structural information that can greatly enhance the design of novel HDAC inhibitors is so far only available for hydroxamic acids in complex with HDAC or HDAC-like enzymes. Here, the first structure of an enzyme complex with a nonhydroxamate HDAC inhibitor is presented. The structure of the trifluoromethyl ketone inhibitor 9,9,9-trifluoro-8-oxo-N-phenylnonanamide in complex with bacterial FB188 HDAH (histone deacetylase-like amidohydrolase from Bordetella/Alcaligenes strain FB188) has been determined. HDAH reveals high sequential and functional homology to human class 2 HDACs and a high structural homology to human class 1 HDACs. Comparison with the structure of HDAH in complex with SAHA reveals that the two inhibitors superimpose well. However, significant differences in binding to the active site of HDAH were observed. In the presented structure the O atom of the trifluoromethyl ketone moiety is within binding distance of the Zn atom of the enzyme and the F atoms participate in interactions with the enzyme, thereby involving more amino acids in enzyme–inhibitor binding.

OSTI ID:
22360304
Journal Information:
Acta Crystallographica. Section F, Vol. 63, Issue Pt 4; Other Information: PMCID: PMC2330214; PMID: 17401192; PUBLISHER-ID: hv5077; OAI: oai:pubmedcentral.nih.gov:2330214; Copyright (c) International Union of Crystallography 2007; Country of input: International Atomic Energy Agency (IAEA); ISSN 1744-3091
Country of Publication:
United Kingdom
Language:
English