skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The impact of galaxy geometry and mass evolution on the survival of star clusters

Journal Article · · Astrophysical Journal
; ;  [1]
  1. Center for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, VIC 3122 (Australia)

Direct N-body simulations of globular clusters in a realistic Milky-Way-like potential are carried out using the code NBODY6 to determine the impact of the host galaxy disk mass and geometry on the survival of star clusters. A relation between disk mass and star-cluster dissolution timescale is derived. These N-body models show that doubling the mass of the disk from 5 × 10{sup 10} M {sub ☉} to 10 × 10{sup 10} M {sub ☉} halves the dissolution time of a satellite star cluster orbiting the host galaxy at 6 kpc from the galactic center. Different geometries in a disk of identical mass can determine either the survival or dissolution of a star cluster orbiting within the inner 6 kpc of the galactic center. Furthermore, disk geometry has measurable effects on the mass loss of star clusters up to 15 kpc from the galactic center. N-body simulations performed with a fine output time step show that at each disk crossing the outer layers of star clusters experiences an increase in velocity dispersion of ∼5% of the average velocity dispersion in the outer section of star clusters. This leads to an enhancement of mass loss—a clearly discernable effect of disk shocking. By running models with different inclinations, we determine that star clusters with an orbit that is perpendicular to the Galactic plane have larger mass loss rates than do clusters that evolve in the Galactic plane or in an inclined orbit.

OSTI ID:
22357291
Journal Information:
Astrophysical Journal, Vol. 784, Issue 2; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English

Similar Records

UPDATE ON THE CETUS POLAR STREAM AND ITS PROGENITOR
Journal Article · Sun Oct 20 00:00:00 EDT 2013 · Astrophysical Journal · OSTI ID:22357291

On the shoulders of giants: properties of the stellar halo and the Milky Way mass distribution
Journal Article · Fri Oct 10 00:00:00 EDT 2014 · Astrophysical Journal · OSTI ID:22357291

THE SIZE SCALE OF STAR CLUSTERS
Journal Article · Mon Sep 10 00:00:00 EDT 2012 · Astrophysical Journal · OSTI ID:22357291