skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Chemical constraints on the contribution of population III stars to cosmic reionization

Journal Article · · Astrophysical Journal
;  [1]; ;  [2]
  1. Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany)
  2. Institut d'Astrophysique de Paris, UMR 7095, UPMC, Paris VI, 98 bis boulevard Arago, F-75014 Paris (France)

Recent studies have highlighted that galaxies at z = 6-8 fall short of producing enough ionizing photons to reionize the intergalactic medium, and suggest that Population III stars could resolve this tension, because their harder spectra can produce ∼10 × more ionizing photons than Population II. We use a semi-analytic model of galaxy formation, which tracks galactic chemical evolution, to gauge the impact of Population III stars on reionization. Population III supernovae produce distinct metal abundances, and we argue that the duration of the Population III era can be constrained by precise relative abundance measurements in high-z damped Lyα absorbers (DLAs), which provide a chemical record of past star formation. We find that a single generation of Population III stars can self-enrich galaxies above the critical metallicity Z {sub crit} = 10{sup –4} Z {sub ☉} for the Population III-to-II transition, on a very short timescale t {sub self-enrich} ∼ 10{sup 6} yr, owing to the large metal yields and short lifetimes of Population III stars. This subsequently terminates the Population III era, so they contribute ≳ 50% of the ionizing photons only for z ≳ 30, and at z = 10 contribute <1%. The Population III contribution can be increased by delaying metal mixing into the interstellar medium. However, comparing the resulting metal abundance pattern to existing measurements in z ≲ 6 DLAs, we show that the observed [O/Si] ratios of absorbers rule out Population III stars being a major contributor to reionization. Future abundance measurements of z ∼ 7-8 QSOs and gamma-ray bursts should probe the era when the chemical vestiges of Population III star formation become detectable.

OSTI ID:
22356829
Journal Information:
Astrophysical Journal, Vol. 787, Issue 1; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English