skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The field induced e{sub 31,f} piezoelectric and Rayleigh response in barium strontium titanate thin films

Journal Article · · Applied Physics Letters
DOI:https://doi.org/10.1063/1.4897299· OSTI ID:22350811
 [1]
  1. Department of Materials Science and Engineering and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

The electric field induced e{sub 31,f} piezoelectric response and tunability of Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} (70:30) and Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3} (60:40) thin films on MgO and silicon was measured. The relative dielectric tunabilities for the 70:30 and 60:40 compositions on MgO were 83% and 70%, respectively, with a dielectric loss of less than 0.011 and 0.004 at 100 kHz. A linear increase in induced piezoelectricity to −3.0 C/m{sup 2} and −1.5 C/m{sup 2} at 110 kV/cm was observed in Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3} on MgO and Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} on Si. Hysteresis in the piezoelectric and dielectric response of the 70:30 composition films was consistent with the positive irreversible dielectric Rayleigh coefficient. Both indicate a ferroelectric contribution to the piezoelectric and dielectric response over 40–80 °C above the global paraelectric transition temperature.

OSTI ID:
22350811
Journal Information:
Applied Physics Letters, Vol. 105, Issue 13; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0003-6951
Country of Publication:
United States
Language:
English