skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Enhancing the photocatalytic activity of nanocrystalline TiO{sub 2} by co-doping with fluorine and yttrium

Journal Article · · Materials Research Bulletin
 [1]; ; ;  [2];  [1]
  1. Key Laboratory of Photovoltaic Materials of Henan Province, Henan University, Kaifeng 475001 (China)
  2. Institute of Microsystemic Physics and School of Physics and Electronics, Henan University, Kaifeng 475001 (China)

Highlights: • (F, Y)-codoped TiO{sub 2} nanoparticles were prepared by a simple sol–gel method. • The highest photocatalytic activity (15 times of that over the pure TiO{sub 2}) was exhibited in the codoped TiO{sub 2} with 0.05% Y doping level. • The Y doping induced oxygen vancancies played a duel role on the photocatalyic activity of the codoped TiO{sub 2}. • The photocatalytic reactive oxygen species are critical to the photocatalytic degradation processes. - Abstract: Fluorine and yttrium codoped TiO{sub 2} nanoparticles were prepared using a simple sol–gel method. The products were characterized with various spectroscopic and analytical techniques to determine their structural, morphological, optical absorption and photocatalytic properties. The results reveal that neither F nor Y doping causes obvious absorption edge shift in TiO{sub 2}. Photoluminescence (PL) emission spectra present that the PL signal is enhanced, suggesting a decrease of photo-generated charge carrier separation efficiency, after the F or Y doping. The synergistic action by the F and Y doping leads to the highest photocatalytic activity for the degradation of methylene blue solution in the 0.05% (F, Y)-codoped sample (15 times of that over the pure TiO{sub 2}). With the increase of Y doping level, the photocatalytic performance in the codoped samples increases firstly and then decreases. The photocatalytic activity variations after the F and Y doping were interpreted by the formation of photocatalytic reactive oxygen species induced by the dopings.

OSTI ID:
22348667
Journal Information:
Materials Research Bulletin, Vol. 55; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0025-5408
Country of Publication:
United States
Language:
English