skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Spin-orbit coupling and chaotic rotation for coorbital bodies in quasi-circular orbits

Journal Article · · Astrophysical Journal
 [1];  [2]
  1. Departamento de Física, I3N, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal)
  2. Astronomie et Systèmes Dynamiques, IMCCE-CNRS UMR8028, 77 Av. Denfert-Rochereau, F-75014 Paris (France)

Coorbital bodies are observed around the Sun sharing their orbits with the planets, but also in some pairs of satellites around Saturn. The existence of coorbital planets around other stars has also been proposed. For close-in planets and satellites, the rotation slowly evolves due to dissipative tidal effects until some kind of equilibrium is reached. When the orbits are nearly circular, the rotation period is believed to always end synchronous with the orbital period. Here we demonstrate that for coorbital bodies in quasi-circular orbits, stable non-synchronous rotation is possible for a wide range of mass ratios and body shapes. We show the existence of an entirely new family of spin-orbit resonances at the frequencies n ± kν/2, where n is the orbital mean motion, ν the orbital libration frequency, and k an integer. In addition, when the natural rotational libration frequency due to the axial asymmetry, σ, has the same magnitude as ν, the rotation becomes chaotic. Saturn coorbital satellites are synchronous since ν << σ, but coorbital exoplanets may present non-synchronous or chaotic rotation. Our results prove that the spin dynamics of a body cannot be dissociated from its orbital environment. We further anticipate that a similar mechanism may affect the rotation of bodies in any mean-motion resonance.

OSTI ID:
22348533
Journal Information:
Astrophysical Journal, Vol. 779, Issue 1; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English

Similar Records

LONG-LIVED CHAOTIC ORBITAL EVOLUTION OF EXOPLANETS IN MEAN MOTION RESONANCES WITH MUTUAL INCLINATIONS
Journal Article · Tue Mar 10 00:00:00 EDT 2015 · Astrophysical Journal · OSTI ID:22348533

THE ARCHITECTURE OF THE CASSINI DIVISION
Journal Article · Fri Jan 15 00:00:00 EST 2010 · Astronomical Journal (New York, N.Y. Online) · OSTI ID:22348533

Tidal dissipation in a homogeneous spherical body. II. Three examples: Mercury, Io, and Kepler-10 b
Journal Article · Sat Nov 01 00:00:00 EDT 2014 · Astrophysical Journal · OSTI ID:22348533