skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Statistical properties of super-hot solar flares

Journal Article · · Astrophysical Journal
 [1]; ;  [2]
  1. Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303 (United States)
  2. Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States)

We use Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) high-resolution imaging and spectroscopy observations from ∼6 to 100 keV to determine the statistical relationships between measured parameters (temperature, emission measure, etc.) of hot, thermal plasma in 37 intense (GOES M- and X-class) solar flares. The RHESSI data, most sensitive to the hottest flare plasmas, reveal a strong correlation between the maximum achieved temperature and the flare GOES class, such that 'super-hot' temperatures >30 MK are achieved almost exclusively by X-class events; the observed correlation differs significantly from that of GOES-derived temperatures, and from previous studies. A nearly ubiquitous association with high emission measures, electron densities, and instantaneous thermal energies suggests that super-hot plasmas are physically distinct from cooler, ∼10-20 MK GOES plasmas, and that they require substantially greater energy input during the flare. High thermal energy densities suggest that super-hot flares require strong coronal magnetic fields, exceeding ∼100 G, and that both the plasma β and volume filling factor f cannot be much less than unity in the super-hot region.

OSTI ID:
22348166
Journal Information:
Astrophysical Journal, Vol. 781, Issue 1; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English