skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: On the reliability of microvariability tests in quasars

Journal Article · · Astronomical Journal (New York, N.Y. Online)
 [1];  [2]
  1. Instituto de Astronomía, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad Universitaria, C.P. 04510, Distrito Federal, MexicoAND (Mexico)
  2. (Spain)

Microvariations probe the physics and internal structure of quasars. Unpredictability and small flux variations make this phenomenon elusive and difficult to detect. Variance-based probes such as the C and F tests, or a combination of both, are popular methods to compare the light curves of the quasar and a comparison star. Recently, detection claims in some studies have depended on the agreement of the results of the C and F tests, or of two instances of the F-test, for rejecting the non-variation null hypothesis. However, the C-test is a non-reliable statistical procedure, the F-test is not robust, and the combination of tests with concurrent results is anything but a straightforward methodology. A priori power analysis calculations and post hoc analysis of Monte Carlo simulations show excellent agreement for the analysis of variance test to detect microvariations as well as the limitations of the F-test. Additionally, the combined tests yield correlated probabilities that make the assessment of statistical significance unworkable. However, it is possible to include data from several field stars to enhance the power in a single F-test, increasing the reliability of the statistical analysis. This would be the preferred methodology when several comparison stars are available. An example using two stars and the enhanced F-test is presented. These results show the importance of using adequate methodologies and avoiding inappropriate procedures that can jeopardize microvariability detections. Power analysis and Monte Carlo simulations are useful tools for research planning, as they can demonstrate the robustness and reliability of different research approaches.

OSTI ID:
22342220
Journal Information:
Astronomical Journal (New York, N.Y. Online), Vol. 148, Issue 5; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 1538-3881
Country of Publication:
United States
Language:
English

Similar Records

TESTING TESTS ON ACTIVE GALACTIC NUCLEI MICROVARIABILITY
Journal Article · Mon Mar 15 00:00:00 EDT 2010 · Astronomical Journal (New York, N.Y. Online) · OSTI ID:22342220

TESTING MICROVARIABILITY IN QUASAR DIFFERENTIAL LIGHT CURVES USING SEVERAL FIELD STARS
Journal Article · Sat Aug 15 00:00:00 EDT 2015 · Astronomical Journal (Online) · OSTI ID:22342220

MULTICOLOR OPTICAL MICROVARIABILITY IN S5 0716+714
Journal Article · Tue Feb 15 00:00:00 EST 2011 · Astronomical Journal (New York, N.Y. Online) · OSTI ID:22342220