skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: One-step synthesis of dense and spherical nanostructured V{sub 2}O{sub 5} particles for cathode of lithium batteries and their electrochemical properties

Journal Article · · Materials Research Bulletin

Graphical abstract: Dense and spherical nanostructured V{sub 2}O{sub 5} particles. - Highlights: • One-step synthesis of dense, spherical, nanostructured V{sub 2}O{sub 5} particles was achieved. • As-prepared V{sub 2}O{sub 5} consists of primary particles of approximately 100 nm size. • The electrochemical performance of spherical nanostructured V{sub 2}O{sub 5} was investigated. • The potential range affects to the discharge capacity and cyclability of V{sub 2}O{sub 5}. - Abstract: A one-step synthesis of V{sub 2}O{sub 5} was directly achieved via ultrasonic spray pyrolysis at various synthesis temperatures ranging from 500 to 700 °C. The V{sub 2}O{sub 5} prepared at 500 °C is dense and spherical nanostructured particles, which consist of primary particles with a size of approximately 100 nm. The morphology change remarkably progresses with increasing synthesis temperatures from 500 to 700 °C. The electrochemical performance of a cathode comprising dense and spherical nanostructured V{sub 2}O{sub 5} particles prepared at 500 °C was investigated by galvanostatic discharge–charge cycling and cyclic voltammetry. From the discharge–charge cycling, the initial discharge capacity of the cathode was found to be about 403 mAh g{sup −1} in the potential range of 1.5–4.0 V, but it decreased owing to inherent phase changes with repeated cycling. The potential range significantly affects the cycle performance, and the V{sub 2}O{sub 5} cathode showed good cycle performance in the potential range of 2.5–4.0 V.

OSTI ID:
22341838
Journal Information:
Materials Research Bulletin, Vol. 49; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0025-5408
Country of Publication:
United States
Language:
English