skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Hydrothermal synthesis and metal ions doping effects of single-crystal Mn{sub 3}O{sub 4}

Journal Article · · Materials Research Bulletin

Graphical abstract: - Highlights: • Dopant species and dopant/Mn molar ratio affect the shape of Mn{sub 3}O{sub 4} microcrystal. • For Cu and Ni doped Mn{sub 3}O{sub 4}, the spontaneous valence changes of dopant taken place. • An apparent change in the energy bandgap of Mn{sub 3}O{sub 4} with the metal doping. - Abstract: Synthesis of undoped and transition metal ion doped Mn{sub 3}O{sub 4} microcrystals were achieved through a simple hydrothermal route. The morphologies and structures of the obtained products were characterized using X-ray diffraction, X-ray photoemission spectroscopy and scanning electron microscopy. Results revealed that the low volume percentage of ethanol in the precursor solution limited formation of Mn{sup 2+}, while the introduction of doping ions into the precursor solution caused a direct synthesis of single phase Mn{sub 3}O{sub 4} crystals. For Cu and Ni doping ions, the spontaneous valence changes during the doping process were taken place. The possible doping mechanisms for the formation of single-phase Mn{sub 3}O{sub 4} were discussed briefly. UV–vis spectroscopic studies showed an apparent change in the energy bandgap of Mn{sub 3}O{sub 4} with the metal doping.

OSTI ID:
22341756
Journal Information:
Materials Research Bulletin, Vol. 48, Issue 9; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0025-5408
Country of Publication:
United States
Language:
English