skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Novel method of room temperature ionic liquid assisted Fe{sub 3}O{sub 4} nanocubes and nanoflakes synthesis

Journal Article · · Materials Research Bulletin
 [1];  [2];  [3]
  1. Sustainable Energy and Smart Materials Lab., Department of Nanoscience and Technology, Alagappa University, Karaikudi 630 002, Tamilnadu (India)
  2. Department of Industrial Chemistry, Alagappa University, Karaikudi India (India)
  3. Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan (China)

Graphical abstract: - Highlights: • First time [Bmim][TfO] IL is used for the Fe{sub 3}O{sub 4} nanoparticle synthesis. • Novel method tunes Fe{sub 3}O{sub 4} nanocubes and nanoflakes forms influenced by the base and IL. • Fe{sub 3}O{sub 4} oxidized topotactically into γ-Fe{sub 2}O{sub 3} nanoparticles by annealing and base. • Uniform morphology with average size of 33 nm negligible superstructure are formed. • Ms values are characterized by thin layer of γ-Fe{sub 2}O{sub 3} on the nanoparticle surface. - Abstract: For the first time, the nanomagnetite superparamagnetic particles are successfully synthesized by precipitation method using 1-n-butyl-3-methylimidazolium trifluoromethane sulfonate [Bmim][TfO] ionic liquid medium/surfactant. The obtained Fe{sub 3}O{sub 4} particles are nanocubes and nanoflakes and this formation is influenced by the base concentration and anisotropic circumstances produced by the ionic liquid and their size varies from 20 nm to 150 × 300 nm (width × length). The synthesized magnetite nanoparticles are characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, Field emission scanning electron microscopy (FE-SEM), Transmission electron microscopy (TEM) and Vibrating sample magnetometer (VSM) studies. The results show that the core of the Fe{sub 3}O{sub 4} nanoparticles is surrounded by a thin layer of γ-Fe{sub 2}O{sub 3} by topotactical partial oxidation, which is remarkably proceed with the subsequent calcination. The magnetite nanocubes have high saturation magnetization value and exhibit superparamagnetic hysteresis loop.

OSTI ID:
22341712
Journal Information:
Materials Research Bulletin, Vol. 48, Issue 8; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0025-5408
Country of Publication:
United States
Language:
English