skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-D-BRE-01: A Realistic Breathing Phantom of the Thorax for Testing New Motion Mitigation Techniques with Scanning Proton Therapy

Journal Article · · Medical Physics
DOI:https://doi.org/10.1118/1.4887871· OSTI ID:22333977
; ; ; ; ;  [1];  [2]
  1. Paul Scherrer Institut, Psi-villigen, Aargau (Switzerland)
  2. CSEM, Swiss Centre of Electronics and Microtechnology, Landquart, Graubunden (Switzerland)

Purpose: A prototype breathing phantom (named LuCa) has been developed which simulates the anatomy and motion of a patient thorax.In this work, we describe the results of the first commissioning tests with LuCa. Methods: The phantom provides a close representation of the human thorax. The lungs,contained within a tissue-equivalent ribcage and skin,are made from a polymer foam,which is inflated and deflated using a custommade ventilator. A tumor is simulated using a wooden ball with cutplanes for placing GafChromic films. The ventilator,controlled with Labview software,simulates a full range of breathing motion types.Commissioning tests were performed to assess its performance using imaging (CT and radiographic) and film dosimetry as follows:i)maximum Tumor excursion at acceptable pressure ranges, ii)tumor Motion repeatability between breathing periods,iii)reproducibility between measurement days,iv)tumor-to-surface motion correlation and v)reproducibility of film positioning in phantom. Results: The phantom can generate repeatable motion patterns with sin{sup 4},sin,breath-hold (tumor amplitude repeatability <0.5mm over 10min),aswell as patient-specific motion types. Maximum excursions of the tumor are 20mm and 14mm for the large and small tumor inserts respectively. Amplitude reproducibility (Coefficient of Variation) averaged at 16% for the workable pressure range over 2 months. Good correlation between tumor and surface motion was found with R{sup 2}=0.92. Reproducibility of film positioning within the thorax was within 0.9mm, and maximum 3° error from the coronal plane. Film measurements revealed that the film repositioning error yields relative errors in the mean dose over the planned target volume (PTV) of up to 2.5% and 4.5% for films at the center and on the edge of the PTV respectively. Conclusion: Commissioning tests have shown that the LuCa phantom can produce tumor motion with excellent repeatability. However,a poorer performance in reproducibility of tumor amplitude for a given peak pressure week-to-week. Film set-up reproducibility is adequate for detection of dosimetric errors resulting from motion of >3%. This work is funded by Swiss National Fund Grants 320030-127569 and 320030-1493942-1.

OSTI ID:
22333977
Journal Information:
Medical Physics, Vol. 41, Issue 6; Other Information: (c) 2014 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-2405
Country of Publication:
United States
Language:
English