skip to main content

SciTech ConnectSciTech Connect

Title: SU-D-16A-06: Modeling Biological Effects of Residual Uncertainties For Stereotactic Radiosurgery

Purpose: Residual uncertainties on the order of 1-2 mm are frequently observed when delivering stereotactic radiosurgery via on-line imaging guidance with a relocatable frame. In this study, a predictive model was developed to evalute potentiral late radiation effects associated with such uncertainties. Methods: A mathematical model was first developed to correlate the peripherial isodose volume with the internal and/or setup margins for a radiosurgical target. Such a model was then integrated with a previoulsy published logistic regression normal tissue complication model for determining the symptomatic radiation necrosis rate at various target sizes and prescription dose levels. The model was tested on a cohort of 15 brain tumor and tumor resection cavity patient cases and model predicted results were compared with the clinical results reported in the literature. Results: A normalized target diameter (D{sub 0}) in term of D{sub 0} = 6V/S, where V is the volume of a radiosurgical target and S is the surface of the target, was found to correlate excellently with the peripheral isodose volume for a radiosurgical delivery (logarithmic regression R{sup 2} > 0.99). The peripheral isodose volumes were found increase rapidly with increasing uncertainties levels. In general, a 1-mm residual uncertainties as calculated to resultmore » in approximately 0.5%, 1%, and 3% increases in the symptomatic radiation necrosis rate for D{sub 0} = 1 cm, 2 cm, and 3 cm based on the prescription guideline of RTOG 9005, i.e., 21 Gy to a lesion of 1 cm in diameter, 18 Gy to a lesion 2 cm in diameter, and 15 Gy to a lesion 3 cm in diameter respectively. Conclusion: The results of study suggest more stringent criteria on residual uncertainties are needed when treating a large target such as D{sub 0}≤ 3 cm with stereotactic radiosurgery. Dr. Ma and Dr. Sahgal are currently serving on the board of international society of stereotactic radiosurgery (ISRS)« less
; ; ;  [1] ;  [2]
  1. UCSF Comprehensive Cancer Center, San Francisco, CA (United States)
  2. University of Toronto, Toronto, ON (Canada)
Publication Date:
OSTI Identifier:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 41; Journal Issue: 6; Other Information: (c) 2014 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States