skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Increase in the energy density of the pinch plasma in 3D implosion of quasi-spherical wire arrays

Abstract

Results are presented from experimental studies of the characteristics of the soft X-ray (SXR) source formed in the implosion of quasi-spherical arrays made of tungsten wires and metalized kapron fibers. The experiments were carried out at the Angara-5-1 facility at currents of up to 3 MA. Analysis of the spatial distribution of hard X-ray emission with photon energies above 20 keV in the pinch images taken during the implosion of quasi-spherical tungsten wire arrays (QTWAs) showed that a compact quasi-spherical plasma object symmetric with respect to the array axis formed in the central region of the array. Using a diffraction grazing incidence spectrograph, spectra of SXR emission with wavelengths of 20–400 Å from the central, axial, and peripheral regions of the emission source were measured with spatial resolutions along the array radius and height in the implosion of QTWAs. It is shown that the emission spectra of the SXR sources formed under the implosion of quasi-spherical and cylindrical tungsten wire arrays at currents of up to 3 MA have a maximum in the wavelength range of 50–150 Å. It is found that, during the implosion of a QTWA with a profiled linear mass, a redistribution of energy in the emissionmore » spectrum takes place, which indicates that, during 3D implosion, the energy of longitudinal motion of the array material additionally contributes to the radiation energy. It is also found that, at close masses of the arrays and close values of the current in the range of 2.4{sup −3} MA, the average energy density in the emission source formed during the implosion of a quasi-spherical wire array is larger by a factor of 7 than in the source formed during the implosion of a cylindrical wire array. The experimental data were compared with results of 3D simulations of plasma dynamics and radiation generation during the implosion of quasi-spherical wire arrays with a profiled mass by using the MARPLE-3D radiative magnetohydrodynamic code, developed at the Keldysh Institute of Applied Mathematics, Russian Academy of Sciences.« less

Authors:
 [1]; ; ; ;  [2];  [1]; ; ;  [2];  [3]
  1. Russian Academy of Sciences, Keldysh Institute of Applied Mathematics (Russian Federation)
  2. Troitsk Institute for Innovation and Fusion Research (Russian Federation)
  3. Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)
Publication Date:
OSTI Identifier:
22314723
Resource Type:
Journal Article
Journal Name:
Plasma Physics Reports
Additional Journal Information:
Journal Volume: 40; Journal Issue: 12; Other Information: Copyright (c) 2014 Pleiades Publishing, Ltd.; Country of input: International Atomic Energy Agency (IAEA); Journal ID: ISSN 1063-780X
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; CYLINDRICAL CONFIGURATION; EMISSION SPECTRA; ENERGY DENSITY; EXPERIMENTAL DATA; HARD X RADIATION; IMPLOSIONS; PINCH EFFECT; PLASMA; SOFT X RADIATION; SPHERICAL CONFIGURATION; TUNGSTEN

Citation Formats

Aleksandrov, V. V., E-mail: alexvv@triniti.ru, Gasilov, V. A., Grabovski, E. V., Gritsuk, A. N., E-mail: griar@triniti.ru, Laukhin, Ya. N., Mitrofanov, K. N., Oleinik, G. M., Ol’khovskaya, O. G., Sasorov, P. V., Smirnov, V. P., Frolov, I. N., and Shevel’ko, A. P. Increase in the energy density of the pinch plasma in 3D implosion of quasi-spherical wire arrays. United States: N. p., 2014. Web. doi:10.1134/S1063780X14110014.
Aleksandrov, V. V., E-mail: alexvv@triniti.ru, Gasilov, V. A., Grabovski, E. V., Gritsuk, A. N., E-mail: griar@triniti.ru, Laukhin, Ya. N., Mitrofanov, K. N., Oleinik, G. M., Ol’khovskaya, O. G., Sasorov, P. V., Smirnov, V. P., Frolov, I. N., & Shevel’ko, A. P. Increase in the energy density of the pinch plasma in 3D implosion of quasi-spherical wire arrays. United States. https://doi.org/10.1134/S1063780X14110014
Aleksandrov, V. V., E-mail: alexvv@triniti.ru, Gasilov, V. A., Grabovski, E. V., Gritsuk, A. N., E-mail: griar@triniti.ru, Laukhin, Ya. N., Mitrofanov, K. N., Oleinik, G. M., Ol’khovskaya, O. G., Sasorov, P. V., Smirnov, V. P., Frolov, I. N., and Shevel’ko, A. P. 2014. "Increase in the energy density of the pinch plasma in 3D implosion of quasi-spherical wire arrays". United States. https://doi.org/10.1134/S1063780X14110014.
@article{osti_22314723,
title = {Increase in the energy density of the pinch plasma in 3D implosion of quasi-spherical wire arrays},
author = {Aleksandrov, V. V., E-mail: alexvv@triniti.ru and Gasilov, V. A. and Grabovski, E. V. and Gritsuk, A. N., E-mail: griar@triniti.ru and Laukhin, Ya. N. and Mitrofanov, K. N. and Oleinik, G. M. and Ol’khovskaya, O. G. and Sasorov, P. V. and Smirnov, V. P. and Frolov, I. N. and Shevel’ko, A. P.},
abstractNote = {Results are presented from experimental studies of the characteristics of the soft X-ray (SXR) source formed in the implosion of quasi-spherical arrays made of tungsten wires and metalized kapron fibers. The experiments were carried out at the Angara-5-1 facility at currents of up to 3 MA. Analysis of the spatial distribution of hard X-ray emission with photon energies above 20 keV in the pinch images taken during the implosion of quasi-spherical tungsten wire arrays (QTWAs) showed that a compact quasi-spherical plasma object symmetric with respect to the array axis formed in the central region of the array. Using a diffraction grazing incidence spectrograph, spectra of SXR emission with wavelengths of 20–400 Å from the central, axial, and peripheral regions of the emission source were measured with spatial resolutions along the array radius and height in the implosion of QTWAs. It is shown that the emission spectra of the SXR sources formed under the implosion of quasi-spherical and cylindrical tungsten wire arrays at currents of up to 3 MA have a maximum in the wavelength range of 50–150 Å. It is found that, during the implosion of a QTWA with a profiled linear mass, a redistribution of energy in the emission spectrum takes place, which indicates that, during 3D implosion, the energy of longitudinal motion of the array material additionally contributes to the radiation energy. It is also found that, at close masses of the arrays and close values of the current in the range of 2.4{sup −3} MA, the average energy density in the emission source formed during the implosion of a quasi-spherical wire array is larger by a factor of 7 than in the source formed during the implosion of a cylindrical wire array. The experimental data were compared with results of 3D simulations of plasma dynamics and radiation generation during the implosion of quasi-spherical wire arrays with a profiled mass by using the MARPLE-3D radiative magnetohydrodynamic code, developed at the Keldysh Institute of Applied Mathematics, Russian Academy of Sciences.},
doi = {10.1134/S1063780X14110014},
url = {https://www.osti.gov/biblio/22314723}, journal = {Plasma Physics Reports},
issn = {1063-780X},
number = 12,
volume = 40,
place = {United States},
year = {Mon Dec 15 00:00:00 EST 2014},
month = {Mon Dec 15 00:00:00 EST 2014}
}