skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Low-frequency noise in AlN/AlGaN/GaN metal-insulator-semiconductor devices: A comparison with Schottky devices

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.4892486· OSTI ID:22314571
; ; ; ;  [1]
  1. Center for Nano Materials and Technology, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan)

We have systematically investigated low-frequency noise (LFN) in AlN/AlGaN/GaN metal-insulator-semiconductor (MIS) devices, where the AlN gate insulator layer was sputtering-deposited on the AlGaN surface, in comparison with LFN in AlGaN/GaN Schottky devices. By measuring LFN in ungated two-terminal devices and heterojunction field-effect transistors (HFETs), we extracted LFN characteristics in the intrinsic gated region of the HFETs. Although there is a bias regime of the Schottky-HFETs in which LFN is dominated by the gate leakage current, LFN in the MIS-HFETs is always dominated by only the channel current. Analyzing the channel-current-dominated LFN, we obtained Hooge parameters α for the gated region as a function of the sheet electron concentration n{sub s} under the gate. In a regime of small n{sub s}, both the MIS- and Schottky-HFETs exhibit α∝n{sub s}{sup −1}. On the other hand, in a middle n{sub s} regime of the MIS-HFETs, α decreases rapidly like n{sub s}{sup −ξ} with ξ ∼ 2-3, which is not observed for the Schottky-HFETs. In addition, we observe strong increase in α∝n{sub s}{sup 3} in a large n{sub s} regime for both the MIS- and Schottky-HFETs.

OSTI ID:
22314571
Journal Information:
Journal of Applied Physics, Vol. 116, Issue 5; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-8979
Country of Publication:
United States
Language:
English