skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electronic correlation without double counting via a combination of spin projected Hartree-Fock and density functional theories

Journal Article · · Journal of Chemical Physics
DOI:https://doi.org/10.1063/1.4883491· OSTI ID:22311381
;  [1];  [2]
  1. Department of Chemistry, Rice University, Houston, Texas 77251-1892 (United States)
  2. Department of Chemistry and Department of Physics and Astronomy, Rice University, Houston, Texas 77251-1892, USA and Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

Several schemes to avoid the double counting of correlations in methods that merge multireference wavefunctions with density functional theory (DFT) are studied and here adapted to a combination of spin-projected Hartree-Fock (SUHF) and DFT. The advantages and limitations of the new method, denoted SUHF+f{sub c}DFT, are explored through calculations on benchmark sets in which the accounting of correlations is challenging for pure SUHF or DFT. It is shown that SUHF+f{sub c}DFT can greatly improve the description of certain molecular properties (e.g., singlet-triplet energy gaps) which are not improved by simple addition of DFT dynamical correlation to SUHF. However, SUHF+f{sub c}DFT is also shown to have difficulties dissociating certain types of bonds and describing highly charged ions with static correlation. Possible improvements to the current SUHF+f{sub c}DFT scheme are discussed in light of these results.

OSTI ID:
22311381
Journal Information:
Journal of Chemical Physics, Vol. 140, Issue 24; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-9606
Country of Publication:
United States
Language:
English