skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Laboratory study of nitrate photolysis in Antarctic snow. I. Observed quantum yield, domain of photolysis, and secondary chemistry

Journal Article · · Journal of Chemical Physics
DOI:https://doi.org/10.1063/1.4882898· OSTI ID:22311289
;  [1]; ; ;  [2]
  1. Department of Chemistry, University of Copenhagen, Copenhagen (Denmark)
  2. Univ. Grenoble Alpes, LGGE, F-38000 Grenoble (France)

Post-depositional processes alter nitrate concentration and nitrate isotopic composition in the top layers of snow at sites with low snow accumulation rates, such as Dome C, Antarctica. Available nitrate ice core records can provide input for studying past atmospheres and climate if such processes are understood. It has been shown that photolysis of nitrate in the snowpack plays a major role in nitrate loss and that the photolysis products have a significant influence on the local troposphere as well as on other species in the snow. Reported quantum yields for the main reaction spans orders of magnitude – apparently a result of whether nitrate is located at the air-ice interface or in the ice matrix – constituting the largest uncertainty in models of snowpack NO{sub x} emissions. Here, a laboratory study is presented that uses snow from Dome C and minimizes effects of desorption and recombination by flushing the snow during irradiation with UV light. A selection of UV filters allowed examination of the effects of the 200 and 305 nm absorption bands of nitrate. Nitrate concentration and photon flux were measured in the snow. The quantum yield for loss of nitrate was observed to decrease from 0.44 to 0.003 within what corresponds to days of UV exposure in Antarctica. The superposition of photolysis in two photochemical domains of nitrate in snow is proposed: one of photolabile nitrate, and one of buried nitrate. The difference lies in the ability of reaction products to escape the snow crystal, versus undergoing secondary (recombination) chemistry. Modeled NO{sub x} emissions may increase significantly above measured values due to the observed quantum yield in this study. The apparent quantum yield in the 200 nm band was found to be ∼1%, much lower than reported for aqueous chemistry. A companion paper presents an analysis of the change in isotopic composition of snowpack nitrate based on the same samples as in this study.

OSTI ID:
22311289
Journal Information:
Journal of Chemical Physics, Vol. 140, Issue 24; Other Information: (c) 2014 Author(s); Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-9606
Country of Publication:
United States
Language:
English