skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A new strontium antimonate{sup III} Sr{sub 5}Sb{sub 22}O{sub 38}: Synthesis, crystal structure and characterizations

Journal Article · · Journal of Solid State Chemistry
 [1];  [2];  [3];  [3]
  1. Department of Physics and Electronic Information, Huaibei Normal University, Huaibei, Anhui 235000 (China)
  2. Department of Chemistry and Materials, Yulin Normal University, Yulin, Guangxi 537000 (China)
  3. State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China)

A new strontium antimonate{sup III}, Sr{sub 5}Sb{sub 22}O{sub 38}, has been hydrothermally synthesized and structurally characterized by single crystal X-ray diffraction. It crystallizes in the P2{sub 1}/n space group of the monoclinic system with a=11.739(9) Å, b=12.014(10) Å, c=16.412(13) Å, β=91.460(8)°, V=2314.0(3) Å{sup 3}. The crystal structure is built of seven trigonal–pyramidal SbO{sub 3} and four sphenoid SbO{sub 4} polyhedra which are connected through sharing corner-oxygen atoms to form the complex three-dimensional {sub ∞}{sup 3}[Sb{sub 22}O{sub 38}]{sup 10−} anionic network with two different intersectant tunnels along the [111-bar ] and [11-bar 1-bar ] directions accommodating the electric charge balanced Sr{sup 2+} cations. First-principles electronic structure calculations based on the density functional theory (DFT) and the UV–vis diffuse reflectance spectroscopy measurements both indicate that the compound belongs to a direct band insulator with an optical gap value of 3.3 eV. - Graphical abstract: The 2D Sb–O slabs are stacked through sharing oxygen atoms to form the 3D network structure of the new strontium antimonate{sup III} Sr{sub 5}Sb{sub 22}O{sub 38}. - Highlights: • A new strontium antimonate{sup III}, Sr{sub 5}Sb{sub 22}O{sub 38}, has been hydrothermally synthesized. • The single crystal structure was determined by X-ray diffraction. • The powder XRD and UV–vis absorption spectroscopy were studied. • Theoretical studies interpret the relationships between optical absorption and crystal structure.

OSTI ID:
22309019
Journal Information:
Journal of Solid State Chemistry, Vol. 203; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0022-4596
Country of Publication:
United States
Language:
English