skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: From spin induced ferroelectricity to spin and dipolar glass in a triangular lattice: The CuCr{sub 1−x}V{sub x}O{sub 2} (0≤x≤0.5) delafossite

Journal Article · · Journal of Solid State Chemistry
;  [1];  [2]; ;  [1]
  1. Laboratoire CRISMAT, CNRS UMR 6508, ENSICAEN, 6 Boulevard du Marechal Juin, 14050 Caen Cedex (France)
  2. Analysis and Characterization Department, National Institute for R and D in Electrochemistry and Condensed Matter, Timisoara 30024 (Romania)

The change from antiferromagnetism induced ferroelectricity to spin glass ferroelectric relaxor has been studied along the CuCr{sub 1−x}V{sub x}O{sub 2} (0≤x≤0.5) solid solution of polycrystalline samples. As x increases from CuCrO{sub 2} (x=0) to CuCr{sub 0.82}V{sub 0.18}O{sub 2}, it is found that the Néel temperature decreases from ∼24 K down to ∼13 K. This progressive weakening of the antiferromagnetism of CuCrO{sub 2} induces a rapid decrease of the spin induced ferroelectricity with polarization values going from ∼44 μC/m{sup 2} down to ∼1.5 μC/m{sup 2} for x=0.04 and x=0.08, respectively. Beyond x=0.18 (0.20≤x≤0.50), ac-magnetic susceptibility and magnetization measurements evidence a spin glass state while dielectric permittivity and polarization measurements point towards a relaxor behaviour. This shows that competing magnetic interactions in delafossites are an efficient way to transform a spin induced magnetoelectric into a multiglass (spin and dipolar) state. - Graphical abstract: The P(T) curves evidencing the aging effect on polarization in CuCr{sub 0.5}V{sub 0.5}O{sub 2}: E=135 kV/m is applied during cooling at different temperatures. The P values and the inflection point of the transition depend on the poling temperature suggesting a relaxor behaviour. This effect related to the spin glass state is not observed for the lowest vanadium content. - Highlights: • Samples of the CuCr{sub 1−x}V{sub x}O{sub 2} series have been studied. • The V content increase induces a change from antiferromagnetism to spin glass. • A behavior characterisitic of a spin and dipole glass is demonstrated. • The ferroelectricity is shown to go from spin induced to relaxor. • Competing magnetic interactions are efficient way to generate multiglass state.

OSTI ID:
22309013
Journal Information:
Journal of Solid State Chemistry, Vol. 203; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0022-4596
Country of Publication:
United States
Language:
English