skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Shock wave compression of hexagonal-close-packed metal single crystals: Time-dependent, anisotropic elastic-plastic response of beryllium

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.4889886· OSTI ID:22308462
;  [1]
  1. Institute for Shock Physics and Department of Physics, Washington State University, Pullman, Washington 99164 (United States)

Understanding and modeling the response of hcp metals to high stress impulsive loading is challenging because the lower crystal symmetry, compared to cubic metals, results in a significantly more complex material response. To gain insight into the inelastic deformation of hcp metals subjected to high dynamic stresses, shock wave compression of single crystals provides a useful approach because different inelastic deformation mechanisms can be examined selectively by shock compression along different crystal orientations. As a representative example, we report, here, on wave propagation simulations for beryllium (Be) single crystals shocked along the c-axis, a-axis, and several low-symmetry directions to peak stresses reaching 7 GPa. The simulations utilized a time-dependent, anisotropic material model that incorporated dislocation dynamics, deformation twinning, and shear cracking based descriptions of inelastic deformation. The simulation results showed good overall agreement with measured wave profiles for all the different crystal orientations examined [Pope and Johnson, J. Appl. Phys. 46, 720 (1975)], including features arising from wave mode coupling due to the highly anisotropic inelastic response of Be. This good agreement demonstrates that the measured profiles can be understood in terms of dislocation slip along basal, prismatic, and pyramidal planes, together with deformation twinning along (101{sup ¯}2) planes. Our results show that the response of shocked Be single crystals involves the simultaneous operation of multiple, distinct inelastic deformation mechanisms for all orientations except the c-axis. For shocked c-axis Be, the measured wave profiles do not provide good discrimination between pyramidal slip and other inelastic deformation mechanisms, such as shear cracking. The findings presented here provide insight into the complex inelastic deformation response of shocked Be single crystals and are expected to be useful for other hcp crystals. More broadly, the present work demonstrates the potential of shock wave propagation along low-symmetry directions to examine, and discriminate between, different inelastic deformation mechanisms in crystalline solids.

OSTI ID:
22308462
Journal Information:
Journal of Applied Physics, Vol. 116, Issue 3; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-8979
Country of Publication:
United States
Language:
English