skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effect of deposition times on structure of Ga-doped ZnO thin films as humidity sensor

Journal Article · · AIP Conference Proceedings
DOI:https://doi.org/10.1063/1.4895162· OSTI ID:22308312
;  [1]
  1. School of Applied Physics, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

Gallium doped zinc oxide (GZO) has good electrical property. It is widely used as transparent electrode in photovoltaic devices, and sensing element in gas and pressure sensors. GZO thin film was prepared using magnetron sputtering. Film deposition times were set at 10, 15, 20, 25 and 30 minutes to get samples of different thickness. X-ray diffraction (XRD) was used to determine the structure of GZO thin films. Structure for GZO thin film is hexagonal wurtzite structure. Morphology and thickness of GZO thin films was observed from FESEM micrographs. Grain size and thickness of thin films improved with increasing deposition times. However, increasing the thickness of thin films occur below 25 minutes only. Electrical properties of GZO thin films were studied using a four-point probe technique. The changes in the structure of the thin films lead to the changed of their electrical properties resulting in the reduction of the film resistance. These thin films properties significantly implying the potential application of the sample as a humidity sensor.

OSTI ID:
22308312
Journal Information:
AIP Conference Proceedings, Vol. 1614, Issue 1; Conference: 2014 UKM FST postgraduate colloquium, Selangor (Malaysia), 9-11 Apr 2014; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-243X
Country of Publication:
United States
Language:
English