skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Very low resistance alloyed Ni-based ohmic contacts to InP-capped and uncapped n{sup +}-In{sub 0.53} Ga{sub 0.47}As

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.4900535· OSTI ID:22308195
; ; ;  [1]
  1. SEMATECH, 257 Fuller Road, Suite 2200, Albany, New York 12203 (United States)

Successful application of the silicide-like Ni{sub x}InGaAs phase for self-aligned source/drain contacts requires the formation of low-resistance ohmic contacts between the phase and underlying InGaAs. We report Ni-based contacts to InP-capped and uncapped n{sup +}- In{sub 0.53}Ga{sub 0.47}As (N{sub D} = 3 × 10{sup 19 }cm{sup −3}) with a specific contact resistance (ρ{sub c}) of 4.0 × 10{sup −8 }± 7 × 10{sup −9} Ω·cm{sup 2} and 4.6 × 10{sup −8 }± 9 × 10{sup −9} Ω·cm{sup 2}, respectively, after annealing at 350 °C for 60 s. With an ammonium sulfide pre-metallization surface treatment, ρ{sub c} is further reduced to 2.1 × 10{sup −8 }± 2 × 10{sup −9} Ω·cm{sup 2} and 1.8 × 10{sup −8 }± 1 × 10{sup −9} Ω·cm{sup 2} on epilayers with and without 10 nm InP caps, respectively. Transmission electron microscopy reveals that the ammonium sulfide surface treatment results in more complete elimination of the semiconductor's native oxide at the contact interface, which is responsible for a reduced contact resistance both before and after annealing.

OSTI ID:
22308195
Journal Information:
Journal of Applied Physics, Vol. 116, Issue 16; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-8979
Country of Publication:
United States
Language:
English