skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Theoretical structural and vibrational study of 5-trifluoromethyluracil. A comparison with uracil

Journal Article · · AIP Conference Proceedings
DOI:https://doi.org/10.1063/1.4897881· OSTI ID:22307961
; ; ;  [1];  [2]
  1. Cátedra de Química General, Instituto de Química Inorgánica, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471,(4000), San Miguel de Tucumán, Tucum and #x00E1 (Argentina)
  2. Facultad de Ciencias Exactas, Universidad Andrés Bello, Avda. República 275, 8370146, Santiago (Chile)

In the present work, a comparative study on the structural and vibrational properties of the 5-trifluoromethyluracil (TFMU) derivative with those corresponding to uracil in gas and aqueous solution phases was performed combining the available H{sup 1}-NMR, C{sup 13}-NMR, F{sup 19}-NMR and FTIR spectra with Density Functional Theory (DFT) calculations. Three stable conformers were theoretically determined in both media by using the hybrid B3LYP/6-31G* method. The solvent effects were simulated by means of the self-consistent reaction field (SCRF) method employing the integral equation formalism variant (IEFPCM). Complete assignments of the vibrational spectra in both phases were performed combining the internal coordinates analysis and the DFT calculations with the Scaled Quantum Mechanics Force Field (SQMFF) methodology. The atomic charges, bond orders, solvation energies, dipole moments, molecular electrostatic potentials and force constants parameters were calculated for the three conformers of TFMU in gas phase and aqueous solution.

OSTI ID:
22307961
Journal Information:
AIP Conference Proceedings, Vol. 1618, Issue 1; Conference: ICCMSE 2014: International conference on computational methods in science and engineering 2014, Athens (Greece), 4-7 Apr 2014; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-243X
Country of Publication:
United States
Language:
English