skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Copper doping of ZnO crystals by transmutation of {sup 64}Zn to {sup 65}Cu: An electron paramagnetic resonance and gamma spectroscopy study

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.4885439· OSTI ID:22304488
; ; ;  [1];  [2]
  1. Department of Engineering Physics, Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio 45433 (United States)
  2. Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia 26506 (United States)

Transmutation of {sup 64}Zn to {sup 65}Cu has been observed in a ZnO crystal irradiated with neutrons. The crystal was characterized with electron paramagnetic resonance (EPR) before and after the irradiation and with gamma spectroscopy after the irradiation. Major features in the gamma spectrum of the neutron-irradiated crystal included the primary 1115.5 keV gamma ray from the {sup 65}Zn decay and the positron annihilation peak at 511 keV. Their presence confirmed the successful transmutation of {sup 64}Zn nuclei to {sup 65}Cu. Additional direct evidence for transmutation was obtained from the EPR of Cu{sup 2+} ions (where {sup 63}Cu and {sup 65}Cu hyperfine lines are easily resolved). A spectrum from isolated Cu{sup 2+} (3d{sup 9}) ions acquired after the neutron irradiation showed only hyperfine lines from {sup 65}Cu nuclei. The absence of {sup 63}Cu lines in this Cu{sup 2+} spectrum left no doubt that the observed {sup 65}Cu signals were due to transmuted {sup 65}Cu nuclei created as a result of the neutron irradiation. Small concentrations of copper, in the form of Cu{sup +}-H complexes, were inadvertently present in our as-grown ZnO crystal. These Cu{sup +}-H complexes are not affected by the neutron irradiation, but they dissociate when a crystal is heated to 900 °C. This behavior allowed EPR to distinguish between the copper initially in the crystal and the copper subsequently produced by the neutron irradiation. In addition to transmutation, a second major effect of the neutron irradiation was the formation of zinc and oxygen vacancies by displacement. These vacancies were observed with EPR.

OSTI ID:
22304488
Journal Information:
Journal of Applied Physics, Vol. 115, Issue 24; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-8979
Country of Publication:
United States
Language:
English