skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Interchannel coupling effects in the valence photoionization of SF{sub 6}

Journal Article · · Journal of Chemical Physics
DOI:https://doi.org/10.1063/1.4876576· OSTI ID:22304395
;  [1]
  1. Lawrence Berkeley National Laboratory, Chemical Sciences, Berkeley, California 94720 (United States)

The complex Kohn and polyatomic Schwinger variational techniques have been employed to illustrate the interchannel coupling correlation effects in the valence photoionization dynamics of SF{sub 6}. Partial photoionization cross sections and asymmetry parameters of six valence subshells (1t{sub 1g}, 5t{sub 1u}, 1t{sub 2u}, 3e{sub g}, 1t{sub 2g}, 4t{sub 1u}) are discussed in the framework of several theoretical and experimental studies. The complex Kohn results are in rather good agreement with experimental results, indicative of the fact that the interchannel coupling effects alter the photoionization dynamics significantly. We find that the dominant effect of interchannel coupling is to reduce the magnitude of shape resonant cross sections near the threshold and to induce resonant features in other channels to which resonances are coupled. The long-standing issue concerning ordering of the valence orbitals is addressed and confirmed 4t{sub 1u}{sup 6}1t{sub 2g}{sup 6}3e{sub g}{sup 4}(5t{sub 1u}{sup 6}+1t{sub 2u}{sup 6}) 1t{sub 1g}{sup 6} as the most likely ordering.

OSTI ID:
22304395
Journal Information:
Journal of Chemical Physics, Vol. 140, Issue 20; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-9606
Country of Publication:
United States
Language:
English