skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Structure–performance relationships for cantilever-type piezoelectric energy harvesters

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.4879876· OSTI ID:22304282
; ;  [1];  [2]
  1. Samsung Advanced Institute of Technology, Samsung Electronics, Yongin 446-712 (Korea, Republic of)
  2. Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Virginia 24061 (United States)

This study provides comprehensive analysis of the structure–performance relationships in cantilever-type piezoelectric energy harvesters. It provides full understanding of the effect of all the practical global control variables on the harvester performance. The control variables considered for the analysis were material parameters, areal and volumetric dimensions, and configuration of the inactive and active layers. Experimentally, the output power density of the harvester was maximum when the shape of the beam was close to a square for a constant bending stiffness and a fixed beam area. Through analytical modeling of the effective stiffness for the piezoelectric bimorph, the conditions for enhancing the bending stiffness within the same beam volume as that of a conventional bimorph were identified. The harvester configuration with beam aspect ratio of 0.86 utilizing distributed inactive layers exhibited an giant output power of 52.5 mW and power density of 28.5 mW cm{sup −3} at 30 Hz under 6.9 m s{sup −2} excitation. The analysis further indicates that the trend in the output power with varying damping ratio is dissimilar to that of the efficiency. In order to realize best performance, the harvester should be designed with respect to maximizing the magnitude of output power.

OSTI ID:
22304282
Journal Information:
Journal of Applied Physics, Vol. 115, Issue 20; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-8979
Country of Publication:
United States
Language:
English