skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A hybrid nanoantenna for highly enhanced directional spontaneous emission

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.4885422· OSTI ID:22304049
; ; ; ;  [1];  [2]; ;  [3];  [1]
  1. State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China)
  2. MATEIS, UMR 5510 CNRS, INSA-Lyon, Université de Lyon, Villeurbanne Cedex 69621 (France)
  3. ILM, UMR 5306 CNRS, Université de Lyon, Villeurbanne Cedex 69622 (France)

Spontaneous emission modulated by a hybrid plasmonic nanoantenna has been investigated by employing finite-difference time-domain method. The hybrid nanoantenna configurations constituted by a gap hot-spot and of a plasmonic corrugated grating and a metal reflector sandwiching a SiO{sub 2} thin layer which appears promising for high spontaneous emission enhancement devices. Simulation assays show that the coupling between the gap-antenna and plasmonic corrugations reaches an ultra-high near-field enhancement factor in the excitation process. Moreover, concerning the emission process, the corrugations concentrate the far-field radiated power within a tiny angular volume, offering unprecedented collection efficiency. In the past decades, many kinds of optical antennas have been proposed and optimized to enhance single molecule detection. However, the excitation enhancement effect for single individual or dimmer plasmonic nanostructure is limited due to intrinsic nonradiative decay of the nanoparticle plasmon and quantum tunneling effect. The proposed hybrid configuration overwhelms the enhancement limit of single individual plasmonic structure. The findings provide an insight into spontaneous emission high enhancement through integrating the functions of different metallic nanostructures.

OSTI ID:
22304049
Journal Information:
Journal of Applied Physics, Vol. 115, Issue 24; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-8979
Country of Publication:
United States
Language:
English