skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Observations on size confinement effect in B-C-N nanoparticles embedded in mesoporous silica channels

Journal Article · · Applied Physics Letters
DOI:https://doi.org/10.1063/1.4890000· OSTI ID:22303729
; ;  [1];  [2]
  1. Advanced Glass Group, Research Institute for Ubiquitous Energy Devices, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31, Midorigaoka, Ikeda, Osaka 563-8577 (Japan)
  2. Materials Science Research Group, Research Institute for Ubiquitous Energy Devices, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31, Midorigaoka, Ikeda, Osaka 563-8577 (Japan)

Fluorescent B-C-N/silica nanoparticles were synthesized by solution impregnation method. Effect of B-C-N particle size on the optical properties was investigated by varying the silica pore sizes. Formation of B-C-N nanoparticles within the mesoporous matrix is confirmed by x-ray diffraction, transmission electron microscopy, and Fourier transform infrared spectroscopy. Furthermore, a remarkable blue-shift in emission peak centres with decreasing pore size in conjugation with band gap modification, ascribed to the size confinement effect. A detailed analysis of experimental results by theoretically defined confinement models demonstrates that the B-C-N nanoparticles in the size range of 3–13 nm falls within the confinement regime. This work demonstrated the experimental evidence of the size confinement effect in smaller size B-C-N nanoparticles.

OSTI ID:
22303729
Journal Information:
Applied Physics Letters, Vol. 105, Issue 1; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0003-6951
Country of Publication:
United States
Language:
English