skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Across-plane thermal characterization of films based on amplitude-frequency profile in photothermal technique

Journal Article · · AIP Advances
DOI:https://doi.org/10.1063/1.4898330· OSTI ID:22299620
;  [1]
  1. Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011 (United States)

This work develops an amplitude method for the photothermal (PT) technique to analyze the amplitude of the thermal radiation signal from the surface of a multilayered film sample. The thermal conductivity of any individual layer in the sample can be thereby determined. Chemical vapor deposited SiC film samples (sample 1 to 3: 2.5 to 3.5 μm thickness) with different ratios of Si to C and thermally oxidized SiO{sub 2} film (500 nm thickness) on silicon substrates are studied using the amplitude method. The determined thermal conductivity based on the amplitude method is 3.58, 3.59, and 2.59 W/m⋅K for sample 1 to 3 with ±10% uncertainty. These results are verified by the phase shift method, and sound agreement is obtained. The measured thermal conductivity (k) of SiC is much lower than the value of bulk SiC. The large k reduction is caused by the structure difference revealed by Raman spectroscopy. For the SiO{sub 2} film, the thermal conductivity is measured to be 1.68 ± 0.17 W/m⋅K, a little higher than that obtained by the phase shift method: 1.31 ± 0.06 W/m⋅K. Sensitivity analysis of thermal conductivity and interfacial resistance is conducted for the amplitude method. Its weak-sensitivity to the thermal contact resistance, enables the amplitude method to determine the thermal conductivity of a film sample with little effect from the interface thermal resistance between the film and substrate. The normalized amplitude ratio at a high frequency to that at a low frequency provides a reliable way to evaluate the effusivity ratio of the film to that of the substrate.

OSTI ID:
22299620
Journal Information:
AIP Advances, Vol. 4, Issue 10; Other Information: (c) 2014 Author(s); Country of input: International Atomic Energy Agency (IAEA); ISSN 2158-3226
Country of Publication:
United States
Language:
English