skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The role of a LiF layer on the performance of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/Si organic-inorganic hybrid solar cells

Journal Article · · Applied Physics Letters
DOI:https://doi.org/10.1063/1.4866968· OSTI ID:22293053
 [1]; ; ;  [1]
  1. Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 199 Ren'ai Road, Suzhou 215123 (China)

We report an ultra-thin layer of lithium fluoride (LiF) between silicon (Si) and aluminum (Al) in a Si/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) hybrid solar cell which resulted in a power conversion efficiency (PCE) of 11.09%. The insertion of a thin layer of LiF improved the contact between Si and Al, which decreased the contact resistance from 5.4 × 10{sup −1} Ω cm{sup 2} to 2.6 × 10{sup −2} Ω cm{sup 2}. Also, the electron transport from Si to Al was improved and charge carrier recombination was suppressed. As a result, the short circuit current density, the open circuit voltage, and the fill factor were all improved with the presence of the LiF layer. The solar cell with the LiF/Al bilayer as a cathode displayed a 14.45% enhancement on PCE when compared with the device using pristine Al as a cathode.

OSTI ID:
22293053
Journal Information:
Applied Physics Letters, Vol. 104, Issue 8; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0003-6951
Country of Publication:
United States
Language:
English