skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Cadmium sulfate and CdTe-quantum dots alter DNA repair in zebrafish (Danio rerio) liver cells

Journal Article · · Toxicology and Applied Pharmacology
;  [1];  [2];  [1];  [2]
  1. The Institute of Environmental and Human Health, Texas Tech University, Lubbock, TX 79416 (United States)
  2. Department of Biomedical Engineering, McGill University, Montréal, QC H3A 2B4 (Canada)

Increasing use of quantum dots (QDs) makes it necessary to evaluate their toxicological impacts on aquatic organisms, since their contamination of surface water is inevitable. This study compares the genotoxic effects of ionic Cd versus CdTe nanocrystals in zebrafish hepatocytes. After 24 h of CdSO{sub 4} or CdTe QD exposure, zebrafish liver (ZFL) cells showed a decreased number of viable cells, an accumulation of Cd, an increased formation of reactive oxygen species (ROS), and an induction of DNA strand breaks. Measured levels of stress defense and DNA repair genes were elevated in both cases. However, removal of bulky DNA adducts by nucleotide excision repair (NER) was inhibited with CdSO{sub 4} but not with CdTe QDs. The adverse effects caused by acute exposure of CdTe QDs might be mediated through differing mechanisms than those resulting from ionic cadmium toxicity, and studying the effects of metallic components may be not enough to explain QD toxicities in aquatic organisms. - Highlights: • Both CdSO{sub 4} and CdTe QDs lead to cell death and Cd accumulation. • Both CdSO{sub 4} and CdTe QDs induce cellular ROS generation and DNA strand breaks. • Both CdSO{sub 4} and CdTe QDs induce the expressions of stress defense and DNA repair genes. • NER repair capacity was inhibited with CdSO{sub 4} but not with CdTe QDs.

OSTI ID:
22285437
Journal Information:
Toxicology and Applied Pharmacology, Vol. 272, Issue 2; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0041-008X
Country of Publication:
United States
Language:
English