skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effect of 4 wt.% Cr on microstructure, corrosion resistance and tribological properties of Fe{sub 3}Al–20 wt.%Al{sub 2}O{sub 3} composites

Journal Article · · Materials Characterization

Fe{sub 3}Al–20 wt.%Al{sub 2}O{sub 3} ultrafine grained composites with 4 wt.% Cr were prepared by mechanical alloying inducing self propagating high temperature synthesis with subsequent plasma activated sintering. Microstructures of the composites were studied by X-ray diffraction, scanning electron microscopy, energy dispersive spectrum and transmission electron microscope. Then the relative density, room temperature hardness, static corrosion resistance and dry sliding wear behavior at a temperature range of 25 °C–800 °C of the sintered samples were tested and analyzed. The results showed that the composites had high hardness and a good microstructure with fine grain size, high relative density. The composites with 4 wt.% Cr amount also exhibited excellent comprehensive tribological properties at medium–high temperatures especially at a temperature above 500 °C, although the wear resistance did not be improved at 25 °C–500 °C. 4 wt.% Cr element addition improved the corrosion resistance of the composites significantly with the corrosion loss decreasing by 19.48%. - Highlights: ► In-situ Fe{sub 3}Al–20 wt.%Al{sub 2}O{sub 3} composites with 4 wt.% Cr was prepared by MA-PAS. ► Composites had good tribological properties at the temperature above 500 °C. ► Corrosion resistance was improved obviously by 4 wt.% Cr amount.

OSTI ID:
22285033
Journal Information:
Materials Characterization, Vol. 78; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 1044-5803
Country of Publication:
United States
Language:
English