skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Dielectrophoretic bending of directly printed free-standing ultra-soft nanowires

Journal Article · · Applied Physics Letters
DOI:https://doi.org/10.1063/1.4866002· OSTI ID:22283128

Electrohydrodynamic printing has shown superior resolution compared to conventional ink-jet printing, but the use of electrically charged liquid commonly leads to unwanted repulsion effects posing a threshold to resolution capabilities. However, a recently demonstrated controlled dripping process of nanoscale, particle-laden droplets, could circumvent such resolution obstacles even on insulating substrates. Here, we show that so-printed free-standing nanostructures can be autonomously deformed, and mechanically characterized due to the presence of the electrified nozzle, or, after voltage termination, due to transient charge residuals on the structures themselves. Dielectrophoretic forces, arising between two subsequently printed nanopillars lead to their contactless bending and to the formation of out-of-plane arc structures arising from the connection of the pillar apexes. Once connected, the ultra-soft nanopillars are found to be tightly merged and could, for example, serve in electronics as out of plane nanobonds.

OSTI ID:
22283128
Journal Information:
Applied Physics Letters, Vol. 104, Issue 7; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0003-6951
Country of Publication:
United States
Language:
English