skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Oxygen vacancies induced switchable and nonswitchable photovoltaic effects in Ag/Bi{sub 0.9}La{sub 0.1}FeO{sub 3} /La{sub 0.7}Sr{sub 0.3}MnO{sub 3} sandwiched capacitors

Journal Article · · Applied Physics Letters
DOI:https://doi.org/10.1063/1.4862793· OSTI ID:22280613
; ;  [1];  [2]
  1. Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Science, Beijing 100190 (China)
  2. Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084 (China)

The short circuit photocurrent (I{sub sc}) was found to be strongly dependent on the oxygen vacancies (V{sub Os}) distribution in Ag/Bi{sub 0.9}La{sub 0.1}FeO{sub 3}/La{sub 0.7}Sr{sub 0.3}MnO{sub 3} heterostructures. In order to manipulate the V{sub Os} accumulated at either the Ag/Bi{sub 0.9}La{sub 0.1}FeO{sub 3} or the Bi{sub 0.9}La{sub 0.1}FeO{sub 3}/La{sub 0.7}Sr{sub 0.3}MnO{sub 3} interface by pulse voltages, switchable or nonswitchable photocurrent can be observed without or with changing the polarization direction. The sign of photocurrent could be independent of the direction of polarization when the variation of diffusion current and the modulation of the Schottky barrier at the Ag/Bi{sub 0.9}La{sub 0.1}FeO{sub 3} interface induced by oxygen vacancies are large enough to offset those induced by polarization. Our work provides deep insights into the nature of photovoltaic effects in ferroelectric films, and will facilitate the advanced design of switchable devices combining spintronic, electronic, and optical functionalities.

OSTI ID:
22280613
Journal Information:
Applied Physics Letters, Vol. 104, Issue 3; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0003-6951
Country of Publication:
United States
Language:
English