skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Growth mechanisms study of microcrystalline silicon deposited by SiH{sub 4}/H{sub 2} plasma using tailored voltage waveforms

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.4866693· OSTI ID:22278020
 [1];  [1];  [1]
  1. LPICM-CNRS, Ecole Polytechnique, route de Saclay, 91128 Palaiseau (France)

The use of Tailored Voltage Waveforms is a technique wherein one uses non-sinusoidal waveforms with a period equivalent to RF frequencies to excite a plasma. It has been shown to be an effective technique to decouple maximum Ion Bombardment Energy (IBE) from the ion flux at the surface of the electrodes. In this paper, we use it for the first time as a way to scan through the IBE in order to study the growth mechanism of hydrogenated microcrystalline silicon using a SiH{sub 4}/H{sub 2} chemistry. We find that at critical energies, a stepwise increase in the amorphous to microcrystalline transition thickness is observed, as detected by Real Time Spectroscopic Ellipsometry. The same energy thresholds (30 eV and 70 eV) are found to be very influential on the final surface morphology of the samples, as observed by Atomic Force Microscopy. These thresholds correspond to SiH{sub x}{sup +} bulk displacement (30 eV) and H{sub x}{sup +} (70 eV) surface displacement energies. A model is therefore proposed to account for the impact of these ions on the morphology of μc-Si:H growth.

OSTI ID:
22278020
Journal Information:
Journal of Applied Physics, Vol. 115, Issue 8; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-8979
Country of Publication:
United States
Language:
English