skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Wave-function engineering and absorption spectra in Si{sub 0.16}Ge{sub 0.84}/Ge{sub 0.94}Sn{sub 0.06}/Si{sub 0.16}Ge{sub 0.84} strained on relaxed Si{sub 0.10}Ge{sub 0.90} type I quantum well

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.4862226· OSTI ID:22275831
;  [1];  [2]
  1. Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), UMR CNRS 7325, Aix-Marseille Université, Case 913, Campus de Luminy, 13288 Marseille cedex 9 (France)
  2. Institut d'Electronique Fondamentale (IEF), UMR CNRS 8622, Université Paris-Sud, Bât. 220, 91405 Orsay cedex (France)

We theoretically investigate germanium-tin alloy as a semiconductor for the design of near infrared optical modulators in which the Ge{sub 1−x}Sn{sub x} alloy is the active region. We have calculated the electronic band parameters for heterointerfaces between strained Ge{sub 1−x}Sn{sub x} and relaxed Si{sub 1−y}Ge{sub y}. Then, a type-I strain-compensated Si{sub 0.10}Ge{sub 0.90}/Si{sub 0.16}Ge{sub 0.84}/Ge{sub 0.94}Sn{sub 0.06} quantum well heterostructure optimized in terms of compositions and thicknesses is studied by solving Schrödinger equation without and under applied bias voltage. The strong absorption coefficient (>1.5 × 10{sup 4} cm{sup −1}) and the shift of the direct transition under large Stark effect at 3 V are useful characteristics for the design of optoelectronic devices based on compressively strained IV-IV heterostructures at near infrared wavelengths.

OSTI ID:
22275831
Journal Information:
Journal of Applied Physics, Vol. 115, Issue 3; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-8979
Country of Publication:
United States
Language:
English