skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Cobalt-doped Bi{sub 26}Mo{sub 10}O{sub 69}: Crystal structure and conductivity

Journal Article · · Journal of Solid State Chemistry
 [1];  [2]; ;  [1];  [2];  [3];  [3]
  1. Ural Federal University, Lenin Ave. 51, 620000 Ekaterinburg (Russian Federation)
  2. Institute of Metallurgy, Ural Branch of the Russian Academy of Sciences, 101 Amundsen Str., 620016 Ekaterinburg (Russian Federation)
  3. Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences, 91 Pervomayskaya Str., 620990 Ekaterinburg (Russian Federation)

A series of cobalt-doped bismuth molybdates were synthesized and investigated using X-ray powder diffraction, transmission electron microscopy and impedance spectroscopy. The ranges of solid solution were determined. Two new compounds, Bi{sub 1−x}Co{sub x}[Bi{sub 12}O{sub 14}]Mo{sub 5}O{sub 34.5±δ} (x=0.2) and Bi[Bi{sub 12}O{sub 14}]Mo{sub 5−y}Co{sub y}O{sub 34.5±δ} (y=0.2), which crystallise in monoclinic unit cells have been examined in detail by diffraction methods. Impedance spectroscopy measurements show that the studied materials are good ionic conductors with conductivity values about 5×10{sup −3} S×cm{sup −1} at 973 K and 1.7×10{sup −4} S×cm{sup −1} at 623 K, which are similar to conductivity values of yttrium substituted zirconia and (YSZ) gadolinium doped ceria (CGO). - Graphical abstract: Measured and calculated diffraction spectra for Bi{sub 12.8}Co{sub 0.2}Mo{sub 5}O{sub 34±δ} and projection of the Bi{sub 12.8}Co{sub 0.2}Mo{sub 5}O{sub 34±δ} crystal structure onto the ac plane. Highlights: • The limit of the Bi{sub 1−x}Co{sub x}[Bi{sub 12}O{sub 14}]Mo{sub 5}O{sub 34.5±δ} homogeneity range is equal to x=0.2. • The limit of the Bi[Bi{sub 12}O{sub 14}]Mo{sub 5−y}Co{sub y}O{sub 34.5±δ} homogeneity range is equal to y=0.2. • Solid solutions have monoclinic symmetry. No phase transition is observed. • The conductivity at 700° for y=0.2 solid solutions is equal to −lg σ, S×cm{sup −1}=2.23. • The conductivity at 350° for y=0.2 solid solutions is equal to −lg σ, S×cm{sup −1}=3.74.

OSTI ID:
22274012
Journal Information:
Journal of Solid State Chemistry, Vol. 204; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0022-4596
Country of Publication:
United States
Language:
English