skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electronic structure, magnetic properties, and magnetostructural transformations in rare earth dialuminides

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.4866389· OSTI ID:22273787
 [1]; ;  [1]
  1. The Ames Laboratory, U.S. Department of Energy, Iowa State University, Ames, Iowa 50011-3020 (United States)

We report electronic structure, magnetic properties, and magnetostructural transformations of selected rare earth dialuminides calculated by using local spin density approximation (LSDA), including the Hubbard U parameter (LSDA + U) approach. Total energy calculations show that CeAl{sub 2} and EuAl{sub 2} adopt antiferromagnetic (AFM) ground states, while dialuminides formed by other magnetic lanthanides have ferromagnetic (FM) ground states. The comparison of theoretical and experimental magnetic moments of CeAl{sub 2} indicates that the 4f orbital moment of Ce in CeAl{sub 2} is quenched. Theoretical calculations confirm that Eu in EuAl{sub 2} and Yb in YbAl{sub 2} are divalent. PrAl{sub 2} exhibits a tetragonal distortion near FM transition. HoAl{sub 2} shows a first order magnetostructural transition while DyAl{sub 2} shows a second order transformation below magnetic transition. The dialuminides formed by Nd, Tb, and Er are simple ferromagnets without additional anomalies in the FM state.

OSTI ID:
22273787
Journal Information:
Journal of Applied Physics, Vol. 115, Issue 17; Conference: 55. annual conference on magnetism and magnetic materials, Atlanta, GA (United States), 14-18 Nov 2010; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-8979
Country of Publication:
United States
Language:
English