skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Impacts of surface spins and inter-particle interactions on the magnetism of hollow γ-Fe{sub 2}O{sub 3} nanoparticles

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.4868619· OSTI ID:22273735
; ; ; ;  [1]
  1. Department of Physics, University of South Florida, Tampa, Florida 33620 (United States)

A comparative study of the static and dynamic magnetic properties of polycrystalline hollow γ-Fe{sub 2}O{sub 3} nanoparticles with two distinctly different sizes of 10.3 ± 1.3 nm and 14.8 ± 0.5 nm has been performed. High-resolution TEM images confirmed the crystalline structure and the presence of the shell thickness of 2.17 ± 0.28 nm and 3.25 ± 0.24 nm for the 10 nm and 15 nm particles, respectively. Quantitative fits of the frequency dependent ac susceptibility to the Vogel-Fulcher model, τ = τ{sub o} exp[E{sub a}/k(T − T{sub o})], show stronger inter-particle interactions in the 15 nm nanoparticles than in the 10 nm nanoparticles. A systematic analysis of the room-temperature magnetic loops using the modified Langevin function indicates a stronger effect of disordered surface spins in the 10 nm hollow particles as compared to the 15 nm hollow particles. Our study suggests that while the effect of disordered surface spins dominates the magnetic behavior of the 10 nm hollow particles, both the disordered surface spins and inter-particle interactions contribute to the magnetism of the 15 nm hollow particles.

OSTI ID:
22273735
Journal Information:
Journal of Applied Physics, Vol. 115, Issue 17; Conference: 55. annual conference on magnetism and magnetic materials, Atlanta, GA (United States), 14-18 Nov 2010; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-8979
Country of Publication:
United States
Language:
English