skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: THE PARABOLIC JET STRUCTURE IN M87 AS A MAGNETOHYDRODYNAMIC NOZZLE

Journal Article · · Astrophysical Journal
;  [1]
  1. Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan (China)

The structure and dynamics of the M87 jet from sub-milliarcsec to arcsecond scales are continuously examined. We analyzed the Very Long Baseline Array archival data taken at 43 and 86 GHz to measure the size of very long baseline interferometry (VLBI) cores. Millimeter/sub-millimeter VLBI cores are considered as innermost jet emissions, which has been originally suggested by Blandford and Königl. Those components fairly follow an extrapolated parabolic streamline in our previous study so that the jet has a single power-law structure with nearly 5 orders of magnitude in the distance starting from the vicinity of the supermassive black hole (SMBH), less than 10 Schwarzschild radius (r{sub s}). We further inspect the jet parabolic structure as a counterpart of the magnetohydrodynamic (MHD) nozzle in order to identify the property of a bulk acceleration. We interpret that the parabolic jet consists of Poynting-flux dominated flows, powered by large-amplitude, nonlinear torsional Alfvén waves. We examine the non-relativistic MHD nozzle equation in a parabolic shape. The nature of trans-fast magnetosonic flow is similar to the one of transonic solution of Parker's hydrodynamic solar wind; the jet becomes super-escape as well as super-fast magnetosonic at around ∼10{sup 3} r{sub s}, while the upstream trans-Alfvénic flow speed increases linearly as a function of the distance at ∼10{sup 2}-10{sup 3} r{sub s}. We here point out that this is the first evidence to identify these features in astrophysical jets. We propose that the M87 jet is magnetically accelerated, but thermally confined by the stratified interstellar medium inside the sphere of gravitational influence of the SMBH potential, which may be a norm in active galactic nucleus jets.

OSTI ID:
22270858
Journal Information:
Astrophysical Journal, Vol. 775, Issue 2; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English