skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: MAGNETOHYDRODYNAMIC SIMULATION OF A DISK SUBJECTED TO LENSE-THIRRING PRECESSION

Journal Article · · Astrophysical Journal
;  [1];  [2]
  1. Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States)
  2. Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States)

When matter orbits around a central mass obliquely with respect to the mass's spin axis, the Lense-Thirring effect causes it to precess at a rate declining sharply with radius. Ever since the work of Bardeen and Petterson, it has been expected that when a fluid fills an orbiting disk, the orbital angular momentum at small radii should then align with the mass's spin. Nearly all previous work has studied this alignment under the assumption that a phenomenological 'viscosity' isotropically degrades fluid shears in accretion disks, even though it is now understood that internal stress in flat disks is due to anisotropic MHD turbulence. In this paper we report a pair of matched simulations, one in MHD and one in pure (non-viscous) HD in order to clarify the specific mechanisms of alignment. As in the previous work, we find that disk warps induce radial flows that mix angular momentum of different orientation; however, we also show that the speeds of these flows are generically transonic and are only very weakly influenced by internal stresses other than pressure. In particular, MHD turbulence does not act in a manner consistent with an isotropic viscosity. When MHD effects are present, the disk aligns, first at small radii and then at large; alignment is only partial in the HD case. We identify the specific angular momentum transport mechanisms causing alignment and show how MHD effects permit them to operate more efficiently. Last, we relate the speed at which an alignment front propagates outward (in the MHD case) to the rate at which Lense-Thirring torques deliver angular momentum at smaller radii.

OSTI ID:
22270681
Journal Information:
Astrophysical Journal, Vol. 777, Issue 1; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English