skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Optically activated sub-millimeter dielectric relaxation in amorphous thin film silicon at room temperature

Journal Article · · Applied Physics Letters
DOI:https://doi.org/10.1063/1.4874847· OSTI ID:22269195
; ; ;  [1]
  1. Department of Physics, Colorado School of Mines, Golden, Colorado 80401-1887 (United States)

Knowing the frequency-dependent photo-induced complex conductivity of thin films is useful in the design of photovoltaics and other semi-conductor devices. For example, annealing in the far-infrared could in principle be tailored to the specific dielectric properties of a particular sample. The frequency dependence of the conductivity (whether dark or photo-induced) also gives insight into the effective dimensionality of thin films (via the phonon density of states) as well as the presence (or absence) of free carriers, dopants, defects, etc. Ultimately, our goal is to make low-noise, phase-sensitive room temperature measurements of the frequency-dependent conductivity of thin films from microwave frequencies into the far-infrared; covering, the frequency range from ionic and dipole relaxation to atomic and electronic processes. To this end, we have developed a high-Q (quality factor) open cavity resonator capable of resolving the complex conductivity of sub-micron films in the range of 100–350 GHz (0.1–0.35 THz, or 0.4–1 meV). In this paper, we use a low-power green laser to excite bound charges in high-resistivity amorphous silicon thin film. Even at room temperature, we can resolve both the dark conductivity and photo-induced changes associated with dielectric relaxation and possibly some small portion of free carriers.

OSTI ID:
22269195
Journal Information:
Applied Physics Letters, Vol. 104, Issue 18; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0003-6951
Country of Publication:
United States
Language:
English