skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Malfunctions of Implantable Cardiac Devices in Patients Receiving Proton Beam Therapy: Incidence and Predictors

Journal Article · · International Journal of Radiation Oncology, Biology and Physics
 [1];  [2];  [3];  [2];  [4];  [1];  [5];  [4]
  1. Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)
  2. Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)
  3. Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)
  4. Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)
  5. Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

Purpose: Photon therapy has been reported to induce resets of implanted cardiac devices, but the clinical sequelae of treating patients with such devices with proton beam therapy (PBT) are not well known. We reviewed the incidence of device malfunctions among patients undergoing PBT. Methods and Materials: From March 2009 through July 2012, 42 patients with implanted cardiac implantable electronic devices (CIED; 28 pacemakers and 14 cardioverter-defibrillators) underwent 42 courses of PBT for thoracic (23, 55%), prostate (15, 36%), liver (3, 7%), or base of skull (1, 2%) tumors at a single institution. The median prescribed dose was 74 Gy (relative biological effectiveness; range 46.8-87.5 Gy), and the median distance from the treatment field to the CIED was 10 cm (range 0.8-40 cm). Maximum proton and neutron doses were estimated for each treatment course. All CIEDs were checked before radiation delivery and monitored throughout treatment. Results: Median estimated peak proton and neutron doses to the CIED in all patients were 0.8 Gy (range 0.13-21 Gy) and 346 Sv (range 11-1100 mSv). Six CIED malfunctions occurred in 5 patients (2 pacemakers and 3 defibrillators). Five of these malfunctions were CIED resets, and 1 patient with a defibrillator (in a patient with a liver tumor) had an elective replacement indicator after therapy that was not influenced by radiation. The mean distance from the proton beam to the CIED among devices that reset was 7.0 cm (range 0.9-8 cm), and the mean maximum neutron dose was 655 mSv (range 330-1100 mSv). All resets occurred in patients receiving thoracic PBT and were corrected without clinical incident. The generator for the defibrillator with the elective replacement indicator message was replaced uneventfully after treatment. Conclusions: The incidence of CIED resets was about 20% among patients receiving PBT to the thorax. We recommend that PBT be avoided in pacing-dependent patients and that patients with any type of CIED receiving thoracic PBT be followed closely.

OSTI ID:
22267921
Journal Information:
International Journal of Radiation Oncology, Biology and Physics, Vol. 87, Issue 3; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0360-3016
Country of Publication:
United States
Language:
English