skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The role of 3D microenvironmental organization in MCF-7 epithelial–mesenchymal transition after 7 culture days

Journal Article · · Experimental Cell Research
 [1];  [1];  [1];  [2];  [2];  [1];  [2]; ;  [1]
  1. Pathology Unit, Department of Haematology, Oncology and Clinical Pathology, S. Orsola-Malpighi Hospital, Bologna University (Italy)
  2. Department of Chemistry “G. Ciamician” and National Consortium of Materials Science and Technology (INSTM, RU Bologna), Bologna University (Italy)

We present a multi-technique study on in vitro epithelial–mesenchymal transition (EMT) in human MCF-7 cells cultured on electrospun scaffolds of poly(L-lactic acid) (PLA), with random and aligned fiber orientations. Our aim is to investigate the morphological and genetic characteristics induced by extracellular matrix in tumor cells cultured in different 3D environments, and at different time points. Cell vitality was assessed with AlamarBlue at days 1, 3, 5 and 7. Scanning electron microscopy was performed at culture days 3 and 7. Immunohistochemistry (for E-cadherin, β-catenin, cytokeratins, nucleophosmin, tubulin, Ki-67 and vimentin), immunofluorescence (for F-actin) western blot (for E-cadherin, β-catenin and vimentin) and transmission electron microscopy were carried out at day 7. An EMT gene array followed by PCR analysis confirmed the regulation of selected genes. At day 7, scanning electron microscopy on aligned-PLA revealed spindle-shaped cells gathered in buds and ribbon-like structures, with a higher nucleolar/nuclear ratio and a loss in E-cadherin and β-catenin at immunohistochemistry and western blot. An up-regulation of SMAD2, TGF-β2, TFPI2 and SOX10 was found in aligned-PLA compared to random-PLA cultured cells. The topography of the extracellular matrix has a role in tumor EMT, and a more aggressive phenotype characterizes MCF-7 cells cultured on aligned-PLA scaffold. -- Highlights: • After 7 culture days an aligned-PLA scaffold induces a spindle shape to MCF-7 cells. • Despite these changes, the aligned MCF-7 cells keep an epithelial phenotype. • The extracellular environment alone influences the E-cadherin/β-catenin axis. • The extracellular environment can promote the epithelial–mesenchymal transition.

OSTI ID:
22267810
Journal Information:
Experimental Cell Research, Vol. 319, Issue 10; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0014-4827
Country of Publication:
United States
Language:
English