skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Model nitride irradiated nuclear fuel: production, reaction with water and dilution in nitric acid

Conference ·
OSTI ID:22264161
; ; ; ; ; ;  [1]
  1. JSC - A.A. Bochvar VNIINM, Rogova str. 5a, Moscow (Russian Federation)

Samples of the model nuclear fuel (MNF) were made from separately synthesized nitride powders uranium-plutonium, zirconium, lanthanum and metal additives of simulators (Mo, Pd, Rh, Ag) fission products. Synthesis of initial nitride components was carried out from individual oxides, using a carbo-thermal restoration method. From MNF samples baked at a temperature of 1750 C. degrees, were made ceramographic specimens which were investigated by a scanning electron microscope. The analysis showed that distribution of the MNF components and structure of the samples corresponds to distribution of these components in the irradiated nitride fuel. The samples of MNF of nitride fuel were used for carrying out researches on dissolution in water and nitric acid. Experiments on studying the interaction of MNF with water have been made at 20, 50 and 80 C. degrees. The speed of leaching has been determined by a way of measuring the activity of water (Bq/l) in time. It is shown that an increase of temperature leads to an increase of the speed of leaching of plutonium. The formation of a precipitation, allegedly polymeric forms of plutonium, has been observed. The estimated speed of leaching of plutonium from MNF in water at 80 C. degrees is -0,0064 μgPu/(mm{sup 2}*h). From elements of FP simulators, molybdenum appears to be the most significantly leached. The dissolution of MNF in nitric acid (7,8 and 9,4 mol/l) has been carried out at boiling temperature (106-109 C. degrees). During the process of dissolution, gases were emitted. The assessment of composition of the emitted gases has been carried out. During the filtering of the solutions a precipitate whose weight makes about 2% from the weight of initial fuel has been found. Precipitate represents small powder of metal with gray color. Precipitate was investigated by a scanning electron microscope. The analysis of ranges of absorption of solution showed that the Pu(VI) share to the general content of plutonium in solution can reach 40%. (authors)

Research Organization:
American Nuclear Society, 555 North Kensington Avenue, La Grange Park, IL 60526 (United States)
OSTI ID:
22264161
Resource Relation:
Conference: GLOBAL 2013: International Nuclear Fuel Cycle Conference - Nuclear Energy at a Crossroads, Salt Lake City, UT (United States), 29 Sep - 3 Oct 2013; Other Information: Country of input: France; 17 refs.; Related Information: In: Proceedings of GLOBAL 2013: International Nuclear Fuel Cycle Conference - Nuclear Energy at a Crossroads| 1633 p.
Country of Publication:
United States
Language:
English