Eckart frame is a unique embedding in the theory of molecular vibrations and rotations. It is defined by the condition that the Coriolis coupling of the reference structure of the molecule is zero for every choice of the shape coordinates. It is far from trivial to set up Eckart kinetic energy operators (KEOs), when the shape of the molecule is described by curvilinear coordinates. In order to obtain the KEO, one needs to set up the corresponding contravariant metric tensor. Here, I derive explicitly the Eckart frame rotational measuring vectors. Their inner products with themselves give the rotational elements, and their inner products with the vibrational measuring vectors (which, in the absence of constraints, are the mass-weighted gradients of the shape coordinates) give the Coriolis elements of the contravariant metric tensor. The vibrational elements are given as the inner products of the vibrational measuring vectors with themselves, and these elements do not depend on the choice of the body-frame. The present approach has the advantage that it does not depend on any particular choice of the shape coordinates, but it can be used in conjunction with all shape coordinates. Furthermore, it does not involve evaluation of covariant metric tensors, chainmore » rules of derivation, or numerical differentiation, and it can be easily modified if there are constraints on the shape of the molecule. Both the planar and non-planar reference structures are accounted for. The present method is particular suitable for numerical work. Its computational implementation is outlined in an example, where I discuss how to evaluate vibration-rotation energies and eigenfunctions of a general N-atomic molecule, the shape of which is described by a set of local polyspherical coordinates.« less

Department of Chemistry, University of Helsinki, P.O. Box 55 (A.I. Virtasen aukio 1), Helsinki FIN-00014 (Finland)

Publication Date:

OSTI Identifier:

22255101

Resource Type:

Journal Article

Resource Relation:

Journal Name: Journal of Chemical Physics; Journal Volume: 140; Journal Issue: 7; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)

Country of Publication:

United States

Language:

English

Subject:

71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; CURVILINEAR COORDINATES; EIGENFUNCTIONS; EVALUATION; HAMILTONIANS; KINETIC ENERGY; MOLECULAR STRUCTURE; MOLECULES; ROTATION; VECTORS