skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Anisotropy of effective electron masses in highly doped nonpolar GaN

Journal Article · · Applied Physics Letters
DOI:https://doi.org/10.1063/1.4840055· OSTI ID:22253894
; ; ; ; ; ; ; ;  [1]
  1. Institut für Experimentelle Physik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg (Germany)

The anisotropic effective electron masses in wurtzite GaN are determined by generalized infrared spectroscopic ellipsometry. Nonpolar (112{sup ¯}0) oriented thin films allow accessing both effective masses, m{sub ⊥}{sup *} and m{sub ∥}{sup *}, by determining the screened plasma frequencies. A n-type doping range up to 1.7 × 10{sup 20} cm{sup −3} is investigated. The effective mass ratio m{sub ⊥}{sup *}/m{sub ∥}{sup *} is obtained with highest accuracy and is found to be 1.11 independent on electron concentration up to 1.2 × 10{sup 20} cm{sup −3}. For higher electron concentrations, the conduction band non-parabolicity is mirrored in changes. Absolute values for effective electron masses depend on additional input of carrier concentrations determined by Hall effect measurements. We obtain m{sub ⊥}{sup *}=(0.239±0.004)m{sub 0} and m{sub ∥}{sup *}=(0.216±0.003)m{sub 0} for the parabolic range of the GaN conduction band. Our data are indication of a parabolic GaN conduction band up to an energy of approximately 400 meV above the conduction band minimum.

OSTI ID:
22253894
Journal Information:
Applied Physics Letters, Vol. 103, Issue 23; Other Information: (c) 2013 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0003-6951
Country of Publication:
United States
Language:
English

Similar Records

Optical properties of amorphous and crystalline Sb-doped SnO{sub 2} thin films studied with spectroscopic ellipsometry: Optical gap energy and effective mass
Journal Article · Fri Aug 28 00:00:00 EDT 2015 · Journal of Applied Physics · OSTI ID:22253894

Band gaps in InN/GaN superlattices: Nonpolar and polar growth directions
Journal Article · Sat Dec 14 00:00:00 EST 2013 · Journal of Applied Physics · OSTI ID:22253894

Molecular dynamics studies of InGaN growth on nonpolar (112¯0) GaN surfaces
Journal Article · Mon Jan 01 00:00:00 EST 2018 · Physical Review Materials · OSTI ID:22253894