skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Two-dimensional Fourier transform electronic spectroscopy at a conical intersection

Journal Article · · Journal of Chemical Physics
DOI:https://doi.org/10.1063/1.4867996· OSTI ID:22253370

We report measurement and modeling of two-dimensional (2D) electronic spectra of a silicon naphthalocyanine (SiNc) in benzonitrile, a system for which the polarization anisotropy reveals passage through a square-symmetric Jahn-Teller conical intersection in ∼100 fs [D. A. Farrow, W. Qian, E. R. Smith, A. A. Ferro, and D. M. Jonas, J. Chem. Phys. 128, 144510 (2008)]. The measured 2D Fourier transform (FT) spectra indicate loss of electronic coherence on a similar timescale. The 2D spectra arising from femtosecond vibronic dynamics through the conical funnel are modeled by full non-adiabatic treatment of the coupled electronic and vibrational dynamics for a pair of un-damped Jahn-Teller active vibrations responsible for both electronic decoherence and population transfer. Additional damped Jahn-Teller active modes that can cause only decoherence or population transfer are treated with analytical response functions that can be incorporated into the numerical non-adiabatic calculation by exploiting symmetry assignment of degenerate vibronic eigenstates to one of two electronic states. Franck-Condon active totally symmetric modes are incorporated analytically. The calculations reveal that these conical intersection dynamics alone are incapable of destroying the coherence of the initially prepared wavepacket on the experimentally observed timescale and predict an unobserved recurrence in the photon echo slice at ∼200 fs. Agreement with the experimental two-dimensional electronic spectra necessitates a role for totally symmetric vibrational dynamics in causing the echo slice to decay on a ∼100 fs timescale. This extended model also reproduces the ∼100 fs ultrafast electronic anisotropy decay in SiNc when an “asymmetric solvation mode” with a small stabilization energy of ∼2 cm{sup −1} is included. Although calculations show that inhomogeneities in the energy gap between excited states can broaden the anti-diagonal 2D lineshape, the anti-diagonal width is dominated by totally symmetric vibrational motions in SiNc. For this shallow conical intersection, the non-adiabatic dynamics destroy electronic coherence more slowly than they destroy electronic alignment.

OSTI ID:
22253370
Journal Information:
Journal of Chemical Physics, Vol. 140, Issue 12; Other Information: (c) 2014 Author(s); Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-9606
Country of Publication:
United States
Language:
English