skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Dynamics and microinstabilities at perpendicular collisionless shock: A comparison of large-scale two-dimensional full particle simulations with different ion to electron mass ratio

Journal Article · · Physics of Plasmas
DOI:https://doi.org/10.1063/1.4863836· OSTI ID:22252095
;  [1];  [2];  [3]
  1. Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya 464-8601 (Japan)
  2. Earth System Science and Technology, Kyushu University, Kasuga 816-8580 (Japan)
  3. Department of Physics and Mathematics, Aoyama Gakuin University, Sagamihara 252-5258 (Japan)

Large-scale two-dimensional (2D) full particle-in-cell (PIC) simulations are carried out for studying the relationship between the dynamics of a perpendicular shock and microinstabilities generated at the shock foot. The structure and dynamics of collisionless shocks are generally determined by Alfven Mach number and plasma beta, while microinstabilities at the shock foot are controlled by the ratio of the upstream bulk velocity to the electron thermal velocity and the ratio of the plasma-to-cyclotron frequency. With a fixed Alfven Mach number and plasma beta, the ratio of the upstream bulk velocity to the electron thermal velocity is given as a function of the ion-to-electron mass ratio. The present 2D full PIC simulations with a relatively low Alfven Mach number (M{sub A} ∼ 6) show that the modified two-stream instability is dominant with higher ion-to-electron mass ratios. It is also confirmed that waves propagating downstream are more enhanced at the shock foot near the shock ramp as the mass ratio becomes higher. The result suggests that these waves play a role in the modification of the dynamics of collisionless shocks through the interaction with shock front ripples.

OSTI ID:
22252095
Journal Information:
Physics of Plasmas, Vol. 21, Issue 2; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 1070-664X
Country of Publication:
United States
Language:
English